domingo, 1 de septiembre de 2013

Ácido carboxílico

USOS O APLICACIONES


se utilizan los acidos carboxilicos como emulsificantes, se usan especialmente para pH bajos, debido a su estabilidad en estas condiciones.

Además se usan como antitranspirantes y como neutralizantes, tambien para fabricar detergentes biodegradables, lubricantes y espesantes para pinturas. El ácido esteárico se emplea para combinar caucho o hule con otras sustancias, como pigmentos u otros materiales que controlen la flexibilidad de los productos derivados del caucho; también se usa en la polimerización de estireno y butadieno para hacer caucho artificial. Entre los nuevos usos de los ácidos grasos se encuentran la flotación de menas y la fabricación de desinfectantes, secadores de barniz y estabilizadores de calor para las resinas de vinilo. Los ácidos grasos se utilizan también en productos plásticos, como los recubrimientos para madera y metal, y en los automóviles, desde el alojamiento del filtro de aire hasta la tapicería
 

Características y propiedades

Comportamiento químico de las diferentes posiciones del grupo carboxilo
Los ácidos carboxílicos tienen como fórmula general R-COOH. Tiene propiedades ácidas; los dos átomos de oxígeno son electronegativos y tienden a atraer a los electrones del átomo de hidrógeno del grupo hidroxilo con lo que se debilita el enlace, produciéndose en ciertas condiciones, una ruptura heterolítica cediendo el correspondiente protón o hidrón, H+, y quedando el resto de la molécula con carga -1 debido al electrón que ha perdido el átomo de hidrógeno, por lo que la molécula queda como R-COO-.
 R-COOH \rightleftharpoons R-COO^- + H^+
Además, en este anión, la carga negativa se distribuye (se deslocaliza) simétricamente entre los dos átomos de oxígeno, de forma que los enlaces carbono-oxígeno adquieren un carácter de enlace parcialmente doble.
Generalmente los ácidos carboxílicos son ácidos débiles, con sólo un 1% de sus moléculas disociadas para dar los correspondientes iones, a temperatura ambiente y en disolución acuosa.
Pero sí son más ácidos que otros, en los que no se produce esa deslocalización electrónica, como por ejemplo los alcoholes. Esto se debe a que la estabilización por resonancia o deslocalización electrónica, provoca que la base conjugada del ácido sea más estable que la base conjugada del alcohol y por lo tanto, la concentración de protones provenientes de la disociación del ácido carboxílico sea mayor a la concentración de aquellos protones provenientes del alcohol; hecho que se verifica experimentalmente por sus valores relativos menores de pKa. El ion resultante, R-COO-, se nombra con el sufijo "-ato".
El grupo carboxilo actuando como ácido genera un ion carboxilato que se estabiliza por resonancia
Por ejemplo, el anión procedente del ácido acético se llama ion acetato. Al grupo RCOO- se le denomina carboxilato.
Disociación del ácido acético, sólo se muestran los dos contribuyentes de resonancia que más afectan la estabilidad
 
 ESTRUCTURA.
De los compuestos orgánicos que presentan acidez apreciable, los ácidos carboxílicos son, los más importantes. Estas substancias con tienen el grupo carboxilo.
Si esta unido a un grupo alquilo (RCOOH), o a un grupo arilo (ArCOOH), o que se trate de un grupo alifático o aromático, saturado o no saturado, substituido o no, las propiedades del grupo carboxiloson esencialmente las mismas.
PROPIEDADES FISICAS DE LOS ACIDOS CARBOXILICOS
Sus estructuras hacen suponer que los ácidos carboxílicos sean moléculas polares y , tal como los alcoholes, pueden formar puentes de hidrógeno entre sí y con otros tipos de moléculas. Los ácidos carboxílicos se comportan en forma similar a los alcoholes en cuanto a sus solubilidades : los primeros cuatro son miscibles con agua, el ácido de cinco carbonos es parcialmente soluble y los superiores son virtualmente insolubles. La solubilidad en agua se debe a los puentes de hidrógeno entre el ácido carboxílico y el agua. El ácido aromático más simple, el benzoico, contiene demasiados átomos de carbono como para tener una solubilidad apreciable en agua.
Los ácidos carboxílicos son solubles en solventes menos polares, tales como éter, alcohol, benceno, etc. Los ácidos carboxílicos hierven a temperaturas aún más altas que los alcoholes. Estos puntos de ebullición tan elevados se deben a que un par de moléculas del ácido carboxílico se mantinen unidas no por un puente de hidrógeno sino por dos.

Los olores de los ácidos alifáticos inferiores progresan desde los fuertes e irritantes del fórmico y del acético hasta los abiertamente desagradables del butírico, valeriánico y caproico; los ácidos superiores tienen muy poco olor debido a sus bajas volatilidades.
Las sales de los ácidos carboxílicos son sólidos cristalinos no volátiles constituidos por iones positivos y negativos y su propiedades son las que corresponden a tales estructuras. Las fuerzas electrostáticas considerables que mantienen los iones en el retículo cristalino sólo pueden superarse por un calentamiento a temperatura elevada o por medio de un solvente muy polar. La temperatura requerida es tan alta que, antes de lograrla, se rompen enlaces carbono-carbono y se descompone la molécula, lo que sucede generalmente entre los 300-400°C. Raras veces es útil un punto de descomposición para la identificación de una substancia , puesto que, generalmente , refleja la rapidez del calentamiento que la identidad del compuesto.
Las sales de sodio y potasio de la moyoría de los ácidos carboxílicos son fácilmente solubles en agua. Es el caso de ácidos carboxilicos de cadena larga. Estas sales son los principales ingredientes del jabón.
Debido a la fácil interconversión de ácidos y sus sales, este comportamiento puede emplearse de dos modos importantes: para identificación y para separación.

 
 
 
 
 
 
 
 

martes, 13 de agosto de 2013

aldeidos y cetonas

Aldehídos y cetonas
Los aldehídos y las cetonas contienen el grupo funcional carbonilo, fgrcarbo.gif (321 bytes). Se diferencian entre sí en que en los aldehídos este grupo carbonilo se encuentra en un extremo de la cadena hidrocarbonada, por lo que tiene un átomo de hidrógeno unido a él directamente, es decir, que el verdadero grupo funcional es fgralde.gif (1217 bytes), que suele escribirse, por comodidad, en la forma —CHO. En cambio, en las cetonas, el grupo carbonilo se encuentra unido a dos radicales hidrocarbonados: si éstos son iguales, las cetonas se llaman simétricas, mientras que si son distintos se llaman asimétricas. Según el tipo de radical hidrocarbonado unido al grupo funcional, los aldehídos pueden ser alifáticos, R—CHO, y aromáticos, Ar—CHO; mientras que las cetonas se clasifican en alifáticas, R—CO—R', aromáticas, Ar—CO—Ar, y mixtas; R—CO—Ar, según que los dos radicales unidos al grupo carbonilo sean alifáticos, aromáticos o uno de cada clase, respectivamente.
Conviene hacer notar que, si bien los aldehídos y cetonas son los compuestos más sencillos con el grupo carbonilo, hay otros muchos compuestos que contienen también en su molécula el grupo carbonilo que, junto a otras agrupaciones atómicas, constituyen su grupo funcional característico. Entre estos compuestos podemos citar: ácidos carboxílicos, —CO—OH; halogenuros de acilo, —C—X, ésteres, —CO—OR, amidas, —CO—NH2 , etc., sin embargo, el nombre de compuestos carbonílicos suele utilizarse en sentido restringido para designar exclusivamente a los aldehídos y cetonas.
Nomenclatura
En la nomenclatura sistemática, los aldehídos se nombran cambiando por al la o terminal del nombre del hidrocarburo correspondiente a la cadena hidrocarbonada más larga que incluya el grupo funcional —CHO, al que se le asigna la posición 1 a efectos de enumerar los posibles sustituyentes. Los nombres de las cetonas se forman de manera análoga, pero cambiando por ona la o terminal del hidrocarburo progenitor e indicando, si es preciso, la posición del grupo—CO— con un número (el más bajo posible). Las cetonas suelen nombrarse también corrientemente mediante los nombres de los dos radicales unidos al grupo carbonilo, seguidos de la palabra cetona. Ejemplos:
f4cl2mb.gif (601 bytes)
   
f4ch1f2p.gif (1153 bytes)
4Cloro-2-metilbutanal
4-ciclohexil-1-fenil-2-pentanona
Propiedades físicas
Las propiedades físicas (y químicas) características de los aldehídos y cetonas están determinadas por la presencia del grupo funcional carbonilo, en el que existe un enlace doble carbono-oxigeno. Como consecuencia los  aldehídos y cetonas poseen un elevado momento dipolar de hace que existan entre sus moléculas intensas fuerzas de atracción del tipo dipolo-dipolo, por lo que estos compuestos tienen puntos de fusión y de ebullición más altos que los de los hidrocarburos de análogo peso molecular. Sin embargo, las moléculas de aldehídos y cetonas no pueden asociarse mediante enlaces de hidrógeno, por lo que sus puntos de fusión y de ebullición son más bajos que los de los correspondientes alcoholes. Concretamente, los puntos de ebullición de los primeros términos de aldehídos y cetonas son unos 60ºC más altos que los de los hidrocarburos del mismo peso molecular y también unos 60ºC más bajos que los de los correspondientes alcoholes. Esta diferencia se hace cada vez menor, como es lógico, al aumentar la cadena hidrocarbonada y perder influencia relativa el grupo funcional.
En cuanto a la solubilidad, los primeros miembros de ambas series de aldehídos y cetonas son completamente solubles en agua. Al aumentar la longitud de la cadena hidrocarbonada disminuye rápidamente la solubilidad en agua. Así, por ejemplo, los aldehídos y cetonas de cadena lineal con ocho o más átomos de carbono son prácticamente insolubles en agua. Sin embargo, los compuestos carbonílicos son muy solubles en disolventes orgánicos apolares, como éter etílico, benceno, etc. Por otra parte, la propia acetona es un excelente disolvente orgánico, muy utilizado por su especial capacidad para disolver tanto compuestos polares (alcoholes, aminas, agua, etc.), como apolares (hidrocarburos, éteres, grasas, etc.).
Métodos de obtención
Entre los métodos de obtención de compuestos carbonílicos unos son comunes a aldehídos y cetonas, mientras que otros son propios de cada una de estas series, por lo que es conveniente estudiarlos por separado.
1.° Métodos de obtención comunes a aldehídos y cetonas
a) Oxidación de alcoholes
La oxidación de alcoholes primarios produce en una primera etapa, aldehídos; mientras que la oxidación de alcoholes secundarios conduce a cetonas.
Las cetonas son resistentes a la oxidación posterior, por lo que pueden aislarse sin necesidad de tomar precauciones especiales. En cambio, los aldehídos se oxidan fácilmente a los ácidos carboxí1icos correspondientes. Para evitar esta oxidación es necesario separar el aldehído de la mezcla reaccionante a medida que se va formando, lo que se consigue por destilación, aprovechando la mayor volatilidad de los aldehídos inferiores respecto a los correspondientes alcoholes. Así se obtiene,  por ejemplo, el propanal:
CH3—CH2—CH2OHCr2O7Na2 + SO4H2
flechaec.gif (135 bytes)

60-70 ºC
CH3—CH2—CHO
1-propanol




usos y beneficios

USOS MAS FRECUENTES.Los aldehídos:
 son utilizados para la conservación de animales muertos (formaldehido), son utilizados en la industria de los perfumes; porque contienen olores agradables.
Las Cetonas:
 Son utilizadas como disolventes orgánicos, removedor de barniz de uñas (acetona). Otras aplicaciones a mencionar son las siguientes;  Obtención de resinas sintéticas, antiséptico, embalsamamiento, desodorante, fungicidas, obtención de Exógeno o Ciclonita  (explosivos), preparación de pólvoras sin humo; además que son aprovechados para la obtención de Cloroformo y Yodoformo.
























































Algunos aldehídos y cetonas comunes.
Fórmula condensada
Nombre según IUPAC
Nombre común
Aldehído
 
 
HCHO
Metanal
Formaldehído
CH3CHO
Etanal
Acetaldehído
CH3CH2CHO
Propanal
Propionaldehído
CH3CH2CH2CHO
Butanal
Butiraldehído
C6H5CHO
Benzaldehído
Benzaldehído
 
 
 
Cetonas
 
 
CH3COCH3
Propanona
Cetona (dimetilcetona)
CH3COC2CH5
Butanona
Metiletilcetona
C6H5COC6H5
Difenilmetanona/cetona
Benzofenona
C6H10O
Clicohexanona
Ciclohexanona
REACCIONES.
Reacciones de Oxidación de Alcoholes.Los alcoholes primarios pueden oxidarse a aldehídos y los alcoholes secundarios, a cetonas. Estas oxidaciones se presentan en la forma siguiente:




METODOS DE OBTENCIÓN.
Hidratación de alquinos.En presencia de sulfato mercúrico y ácido sulfúrico diluido, como catalizadores, se adiciona una molécula de agua al triple enlace de un alquino, con lo que se forma primero un enol que, al ser inestable, se isomeriza por reagrupamiento en un compuesto carbonílico. Únicamente cuando se utiliza acetileno como producto de partida se obtiene acetaldehído, según la reacción: 

Este es el procedimiento industrial más utilizado en la actualidad para la fabricación de acetaldehído, que es la materia prima de un gran número de importantes industrias orgánicas. Cuando se utilizan acetilenos alquilsustituidos el producto final es una cetona.

lunes, 22 de julio de 2013

trabajo de química


utilidad de los alcoholes en la industria



Los alcoholes primarios y secundarios son líquidos incoloros y de olor agradable, solubles en el agua en cualquier proporción y menos densos que ella. Los terciarios en cambio son todos sólidos. 

Usos 

Los alcoholes tienen una gran gama de usos en la industria y en la ciencia como solventes y combustibles. El etanol y el metanol pueden hacerse combustir de una manera más limpia que la gasolina o el gasoil. Por su baja toxicidad y disponibilidad para disolver sustancias no polares, el etanol es utilizado frecuentemente como solvente en fármacos, perfumes y en esencias vitales como la vainilla. Los alcoholes sirven frecuentemente como versátiles intermediarios en la síntesis orgánica. 

ALCOHOLES:

Los alcoholes son compuestos orgánicos formados a partir de los
hidrocarburos mediante la sustitución de uno o más grupos
hidroxilo por un número igual de átomos de hidrógeno. El
término se hace también extensivo a diversos productos
sustituidos que tienen carácter neutro y que contienen uno o más
grupos alcoholes.

Usos

Los alcoholes se utilizan como productos químicos intermedios y
disolventes en las industrias de textiles, colorantes, productos
químicos, detergentes, perfumes, alimentos, bebidas, cosméticos,
pinturas y barnices. Algunos compuestos se utilizan también en la
desnaturalización del alcohol, en productos de limpieza, aceites
y tintas de secado rápido, anticongelantes, agentes espumígenos
y en la flotación de minerales.
El n-propanol es un disolvente utilizado en lacas, cosméticos,
lociones dentales, tintas de impresión, lentes de contacto y
líquidos de frenos. También sirve como antiséptico, aromatizante
sintético de bebidas no alcohólicas y alimentos, producto químico
intermedio y desinfectante. El isopropanol es otro disolvente industrial importante que se utiliza como anticongelante, en aceites
y tintas de secado rápido, en la desnaturalización de alcoholes
y en perfumes. Se emplea como antiséptico y sustitutivo del
alcohol etílico en cosméticos (p. ej. lociones para la piel, tónicos
capilares y alcohol para fricciones), pero no puede utilizarse en
productos farmacéuticos aplicados internamente. El isopropanol
es un ingrediente de jabones líquidos, limpiacristales, aromatizante sintético de bebidas no alcohólicas y alimentos y producto
químico intermedio.
El n-butanol se emplea como disolvente de pinturas, lacas




utilidad de los esteres en la industria

Los ésteres son empleados en muchos y variados campos del comercio y de la industria, como los siguientes:
  • DisolventesLos ésteres de bajo peso molecular son líquidos y se acostumbran a utilizar como disolventes, especialmente los acetatos de los alcoholes metílico, etílico y butílico.
  • PlastificantesEl acetatopropionato de celulosa y el acetatobutirato de celulosa han conseguido gran importancia como materiales termoplásticos. El nitrato de celulosa con un contenido de 10,5-11% de nitrógeno se llama piroxilina y con alcohol y alcanfor (plastificante) forma el celuloide. El algodón dinamita es nitrato de celulosa con el 12,5-13,5% de nitrógeno. La cordita y la balistita se fabrican a partir de éste, que se plastifica con trinitrato de glicerina (nitroglicerina). Los sulfatos de dimetilo y dietilo (ésteres del ácido sulfúrico) son excelentes agentes de alcoholización de moléculas orgánicas que contienen átomos de hidrógeno lébiles, como por ejemplo, el midón y la celulosa.
  • Aromas artificialesMuchos de los ésteres de bajo peso molecular tienen olores característicos a fruta: plátano (acetado de isoamilo), ron (propionato de isobutilo) y piña (butirato de butilo). Estos ésteres se utilizan en la fabricación de aromas y perfumes sintéticos.
  • Aditivos AlimentariosEstos mismos ésteres de bajo peso molecular que tienen olores característicos a fruta se utilizan como aditivos alimentarios, por ejemplo, en caramelos y otros alimentos que han de tener un sabor afrutado.
  • Productos FarmacéuticosProductos de uso tan frecuente como los analgésicos se fabrican con ésteres.
  • Polímeros DiversosLos ésteres de los ácidos no saturados, por ejemplo, del ácido acrílico o metacrílico, son inestables y se polimerizan rápidamente, produciendo resina; así, el metacrilato de metilo (lucita o plexiglás). De manera análoga los ésteres de los alcoholes no saturados son inestables y reaccionan fácilmente con ellos mismos; así, el acetado de vinilo se polimeriza dando acetato de polivinilo. Las resinas de poliéster, conocidas como gliptales, resultan de la poliesterificación de la glicerina con anhídrido ftálico; el proceso puede controlarse de manera que se produzca una resina fusible o infusible. Cuando la poliesterificación se realiza en presencia de un ácido no saturado de cadena larga del tipo de los aceites secantes, la polimerización de éste por oxidación se superpone a la poliesterificación y se producen los esmaltes sintéticos, duros y resistentes a la intemperie, que son muy adecuados por el acabado de los automóviles. La poliesterificación del etilenglicol con el ácido tereftálico produce fibra de poliéster. Si se da forma de láminas a este material, constituye una excelente película fotográfica.
  • Repelentes de insectosTodos los repelentes de insectos que podemos encontrar en el mercado contienen ésteres.





    utilidad de los éter en la industria
    En química orgánica y bioquímica, un éter es un grupo funcional del tipo R-O-R', en donde R y R' son grupos alquilo, estando el átomo de oxígeno unido y se emplean pasos intermedios:
    ROH + HOR' → ROR' + H2O
    Normalmente se emplea el alcóxido, RO-, del alcohol ROH, obtenido al hacer reaccionar al alcohol con una base fuerte. El alcóxido puede reaccionar con algún compuesto R'X, en donde X es un buen grupo saliente, como por ejemplo yoduro o bromuro. R'X también se puede obtener a partir de un alcohol R'OH.
    RO- + R'X → ROR' + X-
    Al igual que los ésteres, no forman puentes de hidrógeno. Presentan una alta hidrofobicidad, y no tienden a ser hidrolizados. Los éteres suelen ser utilizados como disolventes orgánicos.
    Suelen ser bastante estables, no reaccionan fácilmente, y es difícil que se rompa el enlace carbono-oxígeno. Normalmente se emplea, para romperlo, un ácido fuerte como el ácido yodhídrico, calentando, obteniéndose dos halogenuros, o un alcohol y un halogenuro. Una excepción son los oxiranos (o epóxidos), en donde el éter forma parte de un ciclo de tres átomos, muy tensionado, por lo que reacciona fácilmente de distintas formas.

    reacciones de éter:

    Ruptura por HBr y HI


    Ruptura de HBr y HI


    síntesis
    • La síntesis de éteres de Williamson es la síntesis de éteres más fiable y versátil. Este método implica un ataque SN2 de un ion alcóxido a un haluro de alquilo primario no impedido o tosialato. Los haluros de alquilo secundarios y los tosialatos se utilizan ocasionalmente en la síntesis de Williamson, pero hay competencia en las reacciones de eliminación, por lo que los rendimientos con frecuencia son bajos.
    síntesis de Williamson.
    El alcóxido generalmente se obtiene añadiendo Na, K o NaOH al alcohol.
    en general:
          LA UTILIDAD EN LA INDUSTRIA DE LOS ALCOHOLES, ESTERES Y ÉTERES

    LOS ALCOHOLES
    Los alcoholes son compuestos que presentan en la cadena carbonada uno o más grupos hidroxi u oxidrilo (-OH).
    Propiedades Físicas:
    Las propiedades físicas de un alcohol se basan principalmente en su estructura. El alcohol esta compuesto por un alcano y agua. Contiene un grupo hidrofóbico (sin afinidad por el agua) del tipo de un alcano, y un grupo hidroxilo que es hidrófilo (con afinidad por el agua), similar al agua. De estas dos unidades estructurales, el grupo –OH da a los alcoholes sus propiedades físicas características, y el alquilo es el que las modifica, dependiendo de su tamaño y forma.
    El grupo –OH es muy polar y, lo que es más importante, es capaz de establecer puentes de hidrógeno: con sus moléculas compañeras o con otras moléculas neutras.
    Solubilidad:
    Puentes de hidrógeno: La formación de puentes de hidrógeno permite la asociación entre las moléculas de alcohol. Los puentes de hidrógeno se forman cuando los oxígenos unidos al hidrógeno en los alcoholes forman uniones entre sus moléculas y las del agua. Esto explica la solubilidad del metanol, etanol, 1-propanol, 2-propanol y 2 metil-2-propanol.
    A partir de 4 carbonos en la cadena de un alcohol, su solubilidad disminuye rápidamente en agua, porque el grupo hidroxilo (–OH), polar, constituye una parte relativamente pequeña en comparación con la porción hidrocarburo. A partir del hexanol son solubles solamente en solventes orgánicos.
    Punto de Ebullición: Los puntos de ebullición de los alcoholes también son influenciados por la polaridad del compuesto y la cantidad de puentes de hidrógeno. Los grupos OH presentes en un alcohol hacen que su punto de ebullición sea más alto que el de los hidrocarburos de su mismo peso molecular. En los alcoholes el punto de ebullición aumenta con la cantidad de átomos de carbono y disminuye con el aumento de las ramificaciones.
    El punto de fusión aumenta a medida que aumenta la cantidad de carbonos.
    Densidad: La densidad de los alcoholes aumenta con el número de carbonos y sus ramificaciones. Es así que los alcoholes alifáticos son menos densos que el agua mientras que los alcoholes aromáticos y los alcoholes con múltiples moléculas de –OH, denominados polioles, son más densos.
    Propiedades químicas:
    Oxidación: la oxidación es la reacción de alcoholes para producir ácidos carboxílicos, cetonas o aldehídos dependiendo del tipo de alcohol y de catalizador, puede ser:
    • La reacción de un alcohol primario con  ácido crómico (CrO3) en presencia de piridina produce un aldehído:


    • la reacción de un alcohol primario en presencia del reactivo de jones produce un ácido carboxilo:
    • la reacción de un alcohol secundario en presencia de permanganato de potasio produce una cetona:


    Deshidrogenación: Los alcoholes primarios y secundarios cuando se calientan en contacto con ciertos catalizadores, pierden átomos de hidrógeno para formar aldehídos o cetonas. Si esta deshidrogenación se realiza en presencia de aire (O) el hidrógeno sobrante se combina con el oxígeno para dar agua.

    Halogenaciòn: el alcohol reacciona con el ácido hidrácido para formar haluros de alquilo mas agua:
    R-OH  +  HX -------------------)    R-X   + H2O

    Deshidratación: es una propiedad de los alcoholes mediante la cual podemos obtener eteres o alquenos:
    2 R -CH2OH  ----------------)  R - CH2 - O - CH- R'

    R-R-OH ------------)  R=R   + H2O

    Reacción con cloruro de tionilo: El cloruro de tionilo (SOCl2) se puede usar para convertir alcoholes en el correspondiente cloruro de alquilo en una reacción simple que produce HCl gaseoso y SO2.

    Dibujos y graficas de los alcoholes


    Usos de los alcoholes
     El alcohol es un gran desinfectante. Como tal, es de uso común. También se utiliza con mucha frecuencia en la elaboración de medicamentos, en laboratorios para producir precipitados y demás, en bebidas, jarabes, en la elaboración de perfumes y cosméticos, en distintas aplicaciones dentro de la industria, como combustible, en la fabricación de pintura, barnices, lacas, disolventes, aerosoles, etc., y en un sinfín de productos, unos para consumo humano y otros para uso eminentemente industrial. Aunque existen alrededor de 16 tipos diferente de alcoholes, vamos a centrarnos en dos de ellos por ser los más habituales.
    El alcohol metílico (metanol), también denominado carbinol, alcohol de madera, alcohol de quemar, etc., es el término más sencillo de los alcoholes. Es un líquido incoloro de escasa viscosidad y de olor y sabor penetrante, inmiscible (que no se puede mezclar) con el agua y con la mayoría de los disolventes orgánicos, siendo además muy tóxico e inflamable.
    El alcohol etílico se obtiene por síntesis del etileno o por fermentación de las melazas o almidón. Estos a su vez es extraído de determinados productos hortofrutícolas con alto contenido en azúcar, siendo la remolacha el más común. Este alcohol es el utilizado en la sanidad y en aquellos elaborados para el consumo humano.
    El alcohol para uso sanitario está exento de impuestos, por ello y ante el desvío que se pueda producir de este producto a otros fines, hoy en día el alcohol que se destina a la sanidad con uso solamente desinfectante está desnaturalizado con algunos productos químicos como pueda ser el Cloruro de Cetilpiridinio, que hace nocivo su ingesta, llegando a producir incluso ceguera en algunos casos.
    Nos resulta cono conocida la prueba de la alcoholemia. Debemos tener en cuenta que todo término médico que lleva en su composición la raíz emiahemiahemo, indica sangre. Alcoholemia no es otra cosa que la cantidad de alcohol que en un momento determinado tenemos en la sangre. Y la prueba de esa alcoholemia ya resulta obligatoria si así lo requieren los agentes de Tráfico. Se trata de comprobar el volumen de alcohol en sangre para determinar si se está en condiciones de conducir.
    Aunque tradicionalmente el alcohol haya sido considerado como un producto sedante, actualmente presenta un amplio espectro de efectos contradictorios. Puede deprimir o estimular, tranquilizar o inquietar. En medicina durante mucho tiempo se ha recetado el alcohol como tónico, calmante o soporífico. El papel del alcohol en la medicina ha sido reemplazado por barbitúricos, tranquilizantes y otros productos calmantes e hipnóticos.
    Las bebidas alcohólicas se han utilizado siempre. Es la adicción que reina a lo largo de la historia del hombre. Lo bebían en la antigua Grecia y Roma, los señores y siervos en la Edad Media y cuando los puritanos llegaron a América en 1620, introdujeron la práctica de beber alcohol. En esos tiempos era difícil encontrar agua potable, por lo que todo el mundo bebía alcohol en las comidas.
    El alcohol representaba más que una simple bebida, era la forma de celebrar importantes acontecimientos como tener una nueva casa, la fiesta de la cosecha, las bodas y los funerales. También se utilizaba en medicina para aliviar el dolor, bajar la fiebre o calmar la acidez de estómago.
                                                                  








    Riesgos para la salud

    Metanol
    Entre los muchos procesos de síntesis que existen para la producción de alcohol metílico se encuentra la reacción de Fischer-Tropsch entre el monóxido de carbono y el hidrógeno, de la que se obtiene metanol como subproducto. También se produce mediante la oxidación directa de hidrocarburos o mediante un proceso de hidrogenación en dos etapas en el que se hidrogena el monóxido de carbono para dar formiato de metilo, que a su vez se hidrogena para obtener alcohol metílico. Sin embargo, la síntesis más importante es la realizada mediante hidrogenación catalítica a presión del monóxido de carbono o del dióxido de carbono, a presiones de 100-600 kgf/cm2 y temperaturas de 250-400 ºC.

    El alcohol metílico tiene propiedades tóxicas que pueden hacerse evidentes tanto por exposición aguda como crónica. Los alcohólicos que ingieren este líquido o los trabajadores que inhalan sus vapores pueden sufrir lesiones. En experimentos con animales se ha demostrado que el alcohol metílico puede penetrar en la piel en cantidad suficiente como para causar una intoxicación mortal. En casos de intoxicación grave, generalmente por ingestión, el alcohol metílico actúa de forma específica en el nervio óptico, causando ceguera como resultado de la degeneración del nervio óptico, acompañada de cambios degenerativos en las células ganglionares de la retina y trastornos circulatorios en la coroides.
    La ambliopía es normalmente bilateral y puede aparecer pocas horas después de la ingestión, mientras que la ceguera total no se instaura hasta pasada una semana. Las pupilas aparecen dilatadas, la esclerótica congestionada y el iris está pálido y presenta escotoma central; las funciones respiratorias y cardiovasculares están deprimidas y, en los casos muy graves, el paciente está inconsciente, si bien el coma puede ir precedido de delirio.
    Las consecuencias de la exposición industrial a los vapores de alcohol metílico pueden variar considerablemente de un trabajador a otro. Bajo diferentes condiciones de intensidad y duración de la exposición, los síntomas de la intoxicación son: irritación de las mucosas, cefalea, zumbido de oídos, vértigo, insomnio, nistagmo, dilatación de las pupilas, visión borrosa, náuseas, vómitos, cólicos y estreñimiento. Pueden producirse lesiones cutáneas por la acción irritante y disolvente del alcohol metílico y también por la acción lesiva de los tintes y resinas disueltas en él.
    Estas lesiones se localizan preferentemente en las manos, las muñecas y los antebrazos. No obstante, la causa de estos efectos perjudiciales se debe en general a exposiciones prolongadas a concentraciones muy superiores a los límites recomendados por las autoridades para prevenir la intoxicación por inhalación de vapores de alcohol metílico.
    Se ha sugerido que la exposición crónica combinada a metanol y monóxido de carbono es un factor causante de aterosclerosis cerebral. La acción tóxica del alcohol metílico se atribuye a oxidación metabólica en ácido fórmico o formaldehído, producto éste que tiene un efecto nocivo específico en el sistema nervioso, y posiblemente a acidosis grave. Estos procesos de oxidación pueden ser inhibidos por el alcohol etílico.

    Etanol
    Un riesgo industrial frecuente es la exposición a vapores en la proximidad de un proceso en el que se utiliza alcohol etílico. La exposición prolongada a concentraciones superiores a 5.000 ppm causa irritación de los ojos y la nariz, cefalea, sopor, fatiga y narcosis. El alcohol etílico se oxida muy rápidamente en el organismo a dióxido de carbono y agua. El alcohol no oxidado se excreta en la orina y en el aire espirado, de manera que apenas se producen efectos acumulativos. Su efecto en la piel es similar al de todos los disolventes de grasas y, de no tomarse las debidas precauciones, puede producirse una dermatitis de contacto. Recientemente se ha sospechado la existencia de otro riesgo potencial en las personas expuestas a etanol sintético, por haberse demostrado que este producto es cancerígeno en ratones tratados con dosis altas. Un estudio epidemiológico posterior ha revelado una mayor incidencia de cáncer de laringe (cinco veces superior a la prevista) en un grupo de trabajadores empleados en una fábrica de etanol obtenido mediante ácidos fuertes. Parece ser que el agente causal fue el sulfato de dietilo, aunque también estaban implicados las alquil sulfonas y otros posibles cancerígenos.
    El alcohol etílico es un líquido inflamable y sus vapores forman mezclas inflamables y explosivas con el aire a temperatura ambiente. Una solución acuosa con un 30 % de alcohol puede producir una mezcla inflamable de vapor y aire a 29 ºC. Otra que contenga solamente un 5%de alcohol puede producirla a 62 ºC. La ingestión es poco probable en el entorno industrial, pero posible en el caso de los alcohólicos. El peligro de este consumo anómalo depende de la concentración de etanol, que si es superior al 70 % puede producir lesiones esofágicas y gástricas, y de la presencia de desnaturalizantes. Estos últimos se añaden para hacer que el alcohol tenga un sabor desagradable cuando se obtiene libre de impuestos para fines distintos al del consumo. Muchos de estos desnaturalizantes (p. ej. alcohol metílico, benceno, bases de piridina, metilisobutilcetona, queroseno, acetona, gasolina, dietilftalato, etc.) son más peligrosos para la persona que lo consuma que el propio alcohol etílico. Por todo ello es muy importante asegurarse de que no se produce consumo ilegal de alcohol etílico destinado a usos industriales.
    n-Propanol No se han notificado casos de intoxicación relacionados con el uso industrial de
    n-propanol. Para los animales de experimentación es moderadamente tóxico cuando se administra por vías respiratoria, oral o percutánea. Irrita las mucosas y deprime el sistema nervioso central. Cuando se inhala, produce una leve irritación del aparato respiratorio y ataxia. Es algo más tóxico que el alcohol isopropílico, pero aparentemente provoca los mismos efectos biológicos. Se conoce un caso de fallecimiento por ingestión de 400 ml de n-propanol. Los cambios morfopatológicos observados fueron principalmente edema cerebral y pulmonar, también presentes con frecuencia en la intoxicación etílica. El n-propanol es inflamable y representa un riesgo moderado de incendio.

    Otros compuestos
    El isopropanol es ligeramente tóxico para los animales de experimentación cuando se administra por vía dérmica y moderadamente tóxico por vía oral e intraperitoneal. No se conoce ningún caso de intoxicación industrial, aunque sí se ha detectado una mayor incidencia de cánceres de senos nasales y laringe en trabajadores que participaban en la producción de alcohol isopropílico. La causa podría ser el contacto con aceite isopropílico, que se obtiene como subproducto. La experiencia clínica demuestra que el alcohol isopropílico es más tóxico que el etanol, pero menos que el metanol. El isopropanol se metaboliza en el organismo dando acetona, que puede alcanzar concentraciones elevadas y, a su vez, es metabolizada y se excretada por los riñones y los pulmones. En el ser humano, las concentraciones de 400 ppm producen irritación leve de ojos, nariz y garganta. El curso clínico de la intoxicación por isopropanol es semejante al de la intoxicación por etanol. La ingestión de hasta 20 ml diluidos en agua causa solamente una suave sensación de calor y un ligero descenso de la presión sanguínea. No obstante, en dos casos mortales de intoxicación aguda, unas horas después de la ingestión se produjo parada respiratoria, coma profundo e hipotensión, lo que se considera un signo de mal pronóstico. El isopropanol es un líquido inflamable que conlleva peligro de incendio. El n-butanol es potencialmente más tóxico que cualquiera de sus homólogos inferiores, pero los riesgos prácticos asociados a su producción industria lyasuusoa temperatura ambiente son muy pequeños debido a su escasa volatilidad. Las altas concentraciones de vapor producen narcosis y muerte en los animales. La exposición del ser humano a los vapores puede causar irritación de las mucosas. Las concentraciones que producen irritación varían entre 50 y 200 ppm. Con más de 200 ppm pueden presentarse edema leve transitorio ocular de la conjuntiva y un recuento de eritrocitos ligeramente reducido. El contacto del líquido con la piel provoca irritación, dermatitis y absorción. Es ligeramente tóxico cuando se ingiere y conlleva también peligro de incendio. La reacción de los animales a los vapores de sec-butanol es similar a la observada con n-butanol, si bien el primero es más narcótico y letal. Es un líquido inflamable con peligro de incendio a elevadas concentraciones, la acción de los vapores de isobutanol es principalmente narcótica, como también ocurre con otros alcoholes. Produce irritación ocular cuando la concentración supera los 100 ppm. El contacto del líquido con la piel puede causar eritema. Es ligeramente tóxico por ingestión. Es un líquido inflamable con peligro de incendio. Si bien los vapores de terc-butanol son más narcóticos que los del n - o isobutanol para el ratón, hasta ahora se han notificado pocos casos de intoxicación relacionados con su uso industrial, salvo una leve irritación ocasional de la piel. Es ligeramente tóxico por ingestión. Además, es inflamable y constituye un riesgo importante de incendio. La exposición prolongada a vapor de ciclohexanol puede producir cefalea e irritación de la conjuntiva, aunque no existen riesgos industriales graves. A una concentración de 100 ppm produce irritación de ojos, nariz y garganta. El contacto prolongado del líquido con la piel causa irritación, y el líquido se absorbe lentamente a través de la piel. Es ligeramente tóxico cuando se ingiere. El ciclohexanol se excreta en la orina, conjugado con ácido glucurónico. El líquido es inflamable y entraña un peligro moderado de incendio. La exposición prolongada a los vapores de metilciclohexanol puede causar cefalea e irritación de los ojos y del tracto respiratorio superior. El contacto prolongado del líquido con la piel produce irritación, y el líquido se absorbe lentamente a través de la piel. Es ligeramente tóxico por ingestión y se excreta en la orina, conjugado con ácido glucurónico. Conlleva un peligro moderado de incendio. La exposición a vapores altamente concentrados de una mezcla que contenía alcohol bencílico, benceno y ésteres como disolvente sólo produjo cefalea, vértigo, náuseas, diarrea y pérdida de peso, todos ellos pasajeros, sin que se haya producido ningún caso de enfermedad industrial relacionado con el alcohol bencílico. Esta sustancia produce una leve irritación de la piel y un leve lagrimeo. El líquido es inflamable y conlleva un peligro moderado de incendio. El alcohol alílico es un líquido inflamable e irritante. Causa irri- tación en contacto con la piel, y la absorción a través de la piel da lugar a un dolor profundo en la región donde se ha producido la absorción, además de lesiones sistémicas. Si el líquido penetra en los ojos, puede producir quemaduras graves. Los vapores no poseen propiedades narcóticas serias, pero ejercen un efecto irritante sobre las mucosas y el sistema respiratorio cuando se inhalan como contaminante atmosférico. Su presencia en una atmósfera industrial puede causar lagrimeo, dolor en los ojos y visión borrosa (necrosis de la córnea, hematuria y nefritis).
    Alcoholes amílicos Los alcoholes pentílicos se presentan en varias formas isoméricas, y de las ocho estructuras isoméricas posibles, tres de ellas tienen también formas ópticamente activas. De las formas estructurales, cuatro de ellas son alcoholes primarios— 1-pentanol (alcohol amílico), 2-metil-1-butanol, alcohol isopentílico (3-metil-1-butanol, alcohol isoamílico) y alcohol neopentílico (2,2-dimetil-1-propanol); tres son alcoholes secundarios— 2-pentanol, 3-pentanol y 3-metil-2-butanol; y el último es un alcohol terciario—el alcohol tercpentílico (2-metil-2-butanol).
    El alcohol pentílico irrita las mucosas de los ojos, la nariz y la garganta cuando alcanza concentraciones de 100 ppm. Si bien se absorbe por vía digestiva, respiratoria y cutánea, la incidencia de enfermedades profesionales es muy baja. El producto crudo causa rápidamente irritación de las mucosas debido a la presencia de materiales volátiles extraños. Los síntomas de enfermedad generalizada son cefalea, mareo, náuseas, vómitos, diarrea, delirio y narcosis. El hecho de que el alcohol pentílico se utilice con frecuencia en estado impuro y mezclado con otros disolventes, hace imposible atribuir a este alcohol síntomas o hallazgos distintivos. La facilidad con la que se metabolizan los alcoholes decrece de los alcoholes primarios a los secundarios y terciarios. De los tres, los alcoholes terciarios son los que más se excretan sin sufrir cambios. Aunque la toxicidad varía según la configuración química, puede afirmarse, en términos generales, que una mezcla de alcoholes pentílicos es aproximadamente diez veces más tóxica que el alcohol etílico. Este hecho se refleja en los límites de exposición recomendados para los dos alcoholes—100 ppm y 1.000 ppm, respectivamente. El riesgo de incendio de los alcoholes amílicos no es particularmente elevado.